Tetrahedron Letters 51 (2010) 1044–1047

Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/00404039)

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

A chemoenzymatic and enantioselective total synthesis of the resorcylic acid lactone L-783,290, the trans-isomer of L-783,277

Andrew Lin, Anthony C. Willis, Martin G. Banwell *

Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 0200, Australia

article info

abstract

Article history: Received 5 November 2009 Accepted 11 December 2009 Available online 21 December 2009

Keywords: Chemoenzymatic Heck reaction Resorcylic acid lactones Ring-closing metathesis Synthesis

The mycotoxins known as resorcylic acid lactones (RALs) constitute a significant group of 14-membered and benzannulated macrolides that have been isolated from a wide range of microfungi.¹ Representative examples of these types of natural products include radicicol (1, a HSP-90 inhibitor),² zearalenone (2, an oestrogen ago-nist),^{[3](#page-2-0)} hypothemycin (3, a MAP kinase inhibitor)^{[4](#page-2-0)} and L-783,277 (4, a MEK inhibitor).⁵ The remarkable range of potent biological properties displayed by such compounds has attracted a great deal of attention.¹ Indeed, a number of RALs are considered important leads for the development of new therapeutic agents for the treatment of a range of human disease states, particularly cancer.¹ This situation has resulted in extensive efforts to develop economical and flexible routes to the RALs^{1,6} and various analogues.⁷

O OH O HO \sim \sim \sim \sim \sim \sim **2** O OH O HO **1** Cl O O O OH O MeO \vee \vee \vee \vee \vee \vee \vee \vee \vee \vee **3** H_{Q} Q_{H} O OH O MeO O **4** $H\bar{O}$ $\frac{1}{O}H$

Corresponding author. Tel.: +61 2 6125 8202; fax: +61 2 6125 8114. E-mail address: mgb@rsc.anu.edu.au (M.G. Banwell).

0040-4039/\$ - see front matter © 2009 Elsevier Ltd. All rights reserved. doi:[10.1016/j.tetlet.2009.12.067](http://dx.doi.org/10.1016/j.tetlet.2009.12.067)

Herein we describe the first synthesis of the structure, 5, assigned to L -783,290,^{5b} the *trans*-isomer and co-metabolite of the RAL L-783,277 (4) .^{5,8} Both compounds were isolated from a Phoma spp. (ATCC 74403) by bioassay-guided fractionation using a kinase screen. 5 L-783,277 is a potent and irreversible inhibitor of MEK, a threonine/tyrosine-specific MAP kinase (IC₅₀ of 4 nM) and a slightly weaker inhibitor of Lck kinase (IC₅₀ 750 nM). L-783,290 showed an IC_{50} of 300 nM when tested as an inhibitor of MEK.

- 2009 Elsevier Ltd. All rights reserved.

The structure, 5, assigned to the resorcylic acid lactone L-783,290 has been prepared for the first time and in a modular fashion using a Heck reaction to link the readily available fragments 8 and 14. Chemoenzymatic methods were used to prepare the latter fragment, in enantiopure form, from chlorobenzene.

Our synthesis is a modular one that combines three fragments corresponding to $C1 - C6 + C12'$, $C1' - C6'$ and $C8' - O11'$ of target 5. The key bond-forming events are shown in structure 5 and involve, in order of execution, Heck coupling, esterification and ring-closing metathesis (RCM) processes. In contrast to the other processes, the Heck reaction is rarely applied in the synthesis of RALs^{1a,9} despite the potential it offers for introducing relevant functionality found in the C1'-C3' region of many of the more biologically active members of this class of natural product.

The synthesis of the aromatic fragment corresponding to $C1-C6 + C12'$ of target 5 was straightforward ([Scheme 1\)](#page-1-0). Thus,

Scheme 1.

subjection of the commercially available dimethoxyaniline 6 to a Sandmeyer reaction using potassium iodide as the nucleophilic source gave aryl iodide 7 in 71% yield. Reaction of the latter compound with DMF/POCl₃ under Vilsmeier-Haack conditions then afforded, as a crystalline solid, the required and previously reported¹⁰ benzaldehyde **8** (63%).

A chemoenzymatic pathway was employed in the enantioselective assembly of the C1'–C6' fragment. As shown in Scheme 2, the reaction sequence starts with the enantiomerically pure and commercially available cis-1,2-dihydrocatechol 9 derived from the whole-cell biotransformation of chlorobenzene.^{[11](#page-3-0)} The non-chlorinated double bond in this diene can be selectively

hydrogenated in the presence of rhodium on alumina and the resulting chlorocyclohexene^{[12,13](#page-3-0)} readily converted, under conventional conditions involving the use of 2,2-dimethoxypropane (2,2-DMP) and p-TsOH in dichloromethane, into the acetonide 10^{[13](#page-3-0)} (63%). Subjection of a methanolic solution of compound **10** to ozonolysis at -78 °C followed by treatment of the intermediate ozonide with dimethyl sulfide and in situ reduction of the ensuing aldehyde with sodium borohydride gave the hydroxy ester 11 in 76% yield. This was readily converted, under conditions defined by Williams et al.,¹⁴ into the Weinreb amide 12 (90%) which was itself converted into the corresponding o-nitrophenyl-selenide 13 (89%) using conditions reported by Grieco et al.^{[15](#page-3-0)} Finally, treatment of compound 13 with m-chloroperbenzoic acid (m -CPBA) in CH₂Cl₂ and exposure of the resulting selenoxides to diethylamine and oxygen then gave the olefin 14 (93%) required for the subsequent Heck reaction. The structure of this pivotal building block was confirmed by a single-crystal X-ray analysis.[16](#page-3-0)

Extensive experimentation was required to achieve an operationally useful Heck coupling of aryl iodide 8 and terminal alkene **14** [\(Scheme 3](#page-2-0)). Under the best conditions identified thus far, 17 heating a DMF solution of a 1:1.5 molar mixture of the substrates in the presence of $Pd(OAc)_2$, potassium carbonate and tetra-nbutylammonium bromide (TBAB) at 80 \degree C for 40 h provided a ca. 8:1 mixture of coupling product 15 and its Z-isomer in 56% com-bined yield at 80–90% conversion. Pinnick-type oxidation^{[18](#page-3-0)} of the chromatographically purified aldehyde 15 gave acid 16 in 75% yield and the latter compound was hydrogenated in the presence of 10% palladium on carbon to give the corresponding saturated system 17 (97%). Subjection of acid 17 to Mitsunobu esterifica- χ tion^{[19](#page-3-0)} with the commercially available and enantiomerically pure unsaturated alcohol 18 gave the ester/amide 19 (90%) that was treated with vinyl magnesium bromide and so affording the diene 20 required for the pivotal RCM reaction. When a 1.5 mM solution of compound 20 in CH₂Cl₂ was treated with Grubbs' second-gener-ation catalyst^{[20](#page-3-0)} the smooth production of macrolide 21 was observed and this was obtained in 48% overall yield from precursor 19. In the final step of the reaction sequence, compound 21 was treated with BCl₃ in CH₂Cl₂ at $-78~^\circ \text{C}^\text{6h}$ and then subjected to aqueous work-up. This sequence resulted in simultaneous cleavage of the C-2 O-methyl ether and hydrolysis of the acetonide unit thus affording the target macrolide 1 in 60% yield and as a white, crystalline solid.

Figure 1. Structure of compound 5 with labelling of selected atoms. Anisotropic displacement ellipsoids display 30% probability levels. Hydrogen atoms are drawn as circles with small radii.

Scheme 2.

Scheme 3.

All the spectral data derived from compound 5 were entirely consistent with the assigned structure, 21 but the final confirmation of this was secured through a single-crystal X-ray analysis of its chloroform solvate.²² The derived ORTEP is shown in [Figure 1](#page-1-0). No spectral data derived from the natural product L-783,290 have been published and, thus far, our various efforts to secure these have been unsuccessful. As such, we have been unable to make relevant comparisons between the two sets of data.

The results of the biological evaluation of compound 5 and the adaptation of the protocols described here to the synthesis of other RAL's will be described in due course.

Acknowledgements

We thank the Institute of Advanced Studies and the Australian Research Council for generous financial support.

Supplementary data

Supplementary data (experimental procedures and product characterization for compounds 5–8, 11–17, 19 and 20, as well as the X-ray crystal data for compounds 5 and 14, are provided) associated with this article can be found, in the online version, at [doi:10.1016/j.tetlet.2009.12.067.](http://dx.doi.org/10.1016/j.tetlet.2009.12.067)

References and notes

1. For useful reviews dealing with this class of compound, see: (a) Winssinger, N.; Barluenga, S. Chem. Commun. 2007, 22; (b) Barluenga, S.; Dakas, P.-Y.; Boulifa, M.; Moulin, E.; Winssinger, N. C. R. Chim. 2008, 11, 1306; (c) Hofmann, T.;

Altmann, K.-H. C. R. Chim. 2008, 11, 1318; (d) Bräse, S.; Encinas, A.; Keck, J.; Nising, C. F. Chem. Rev. 2009, 109, 3903.

- 2. (a) Delmotte, P.; Delmotte-Plaquée, J. Nature 1953, 171, 344; (b) Mirrington, R. N.; Ritchie, E.; Shoppee, C. W.; Taylor, W. C.; Sternhell, S. Tetrahedron Lett. 1964, 5, 365; (c) McCapra, F.; Scott, A. I.; Delmotte, P.; Delmotte-Plaquée, J.; Bhacca, N. S. Tetrahedron Lett. 1964, 5, 869; (d) Cutler, H. G.; Arrendale, R. F.; Springer, J. P.; Cole, P. D.; Roberts, R. G.; Hanlin, R. T. Agric. Biol. Chem. 1987, 51, 3331.
- 3. (a) Stob, M.; Baldwin, R. S.; Tuite, J.; Andrews, F. N.; Gillette, K. G. Nature 1962, 196, 1318; (b) Urry, W. H.; Wehrmeister, H. L.; Hodge, E. B.; Hidy, P. H. Tetrahedron Lett. 1966, 7, 3109; (c) Taub, D.; Girotra, N. N.; Hoffsommer, R. D.; Kuo, C. H.; Slates, H. L.; Weber, S.; Wendler, N. L. Tetrahedron 1968, 24, 2443.
- 4. (a) Nair, M. S. R.; Carey, S. T. Tetrahedron Lett. 1980, 21, 2011; (b) Nair, M. S. R.; Carey, S. T.; James, J. C. Tetrahedron 1981, 37, 2445; (c) Agatsuma, T.; Takahashi, A.; Kabuto, C.; Nozoe, S. Chem. Pharm. Bull. 1993, 41, 373.
- 5. (a) Dombrowski, A.; Jenkins, R.; Raghoobar, S.; Bills, G.; Polishook, J.; Peláez, F.; Burgess, B.; Zhao, A.; Huang, L.; Zhang, Y.; Goetz, M. J. Antibiot. 1999, 52, 1077; (b) Zhao, A.; Lee, S. H.; Mojena, M.; Jenkins, R. G.; Patrick, D. R.; Huber, H. E.; Goetz, M. A.; Hensens, O. D.; Zink, D. L.; Vilella, D.; Dombrowski, A. W.; Lingham, R. B.; Huang, L. J. Antibiot. 1999, 52, 1086.
- 6. For representative examples of recent synthetic studies in the area, see: (a) Garbaccio, R. M.; Stachel, S. J.; Baeschlin, D. K.; Danishefsky, S. J. J. Am. Chem. Soc. 2001, 123, 10903; (b) Tichkowsky, I.; Lett, R. Tetrahedron Lett. 2002, 43, 4003; (c) Geng, X.; Danishefsky, S. J. Org. Lett. 2004, 6, 413; (d) Barluenga, S.; Moulin, E.; Lopez, P.; Winssinger, N. Chem. Eur. J. 2005, 11, 4935; (e) Barluenga, S.; Dakas, P.-Y.; Ferandin, Y.; Meijer, L.; Winssinger, N. Angew. Chem., Int. Ed. 2006, 45, 3951; (f) Lu, J.; Ma, J.; Xie, X.; Chen, B.; She, X.; Pan, X. Tetrahedron: Asymmetry 2006, 17, 1066; (g) Vu, N. Q.; Chai, C. L. L.; Lim, K. P.; Chia, S. C.; Chen, A. Tetrahedron 2007, 63, 7053; (h) Dakas, P.-Y.; Barluenga, S.; Totzke, F.; Zirrgiebel, U.; Winssinger, N. Angew. Chem., Int. Ed. 2007, 46, 6899; (i) Hofmann, T.; Altmann, K.-H. Synlett 2008, 1500; (j) Chrovian, C. C.; Knapp-Reed, B.; Montgomery, J. Org. Lett. 2008, 10, 811; (k) Baird, L. J.; Timmer, M. S. M.; Teesdale-Spittle, P. H.; Harvey, J. E. J. Org. Chem. 2009, 74, 2271; (l) Calo, F.; Richardson, J.; Barrett, A. G. M. Org. Lett. 2009, 11, 4910; (m) Dakas, P.-Y.; Jogireddy, R.; Valot, G.; Barluenga, S.; Winssinger, N. Chem. Eur. J. 2009, 15, 11490.
- 7. For recent examples of analogue studies, see: (a) Yamamoto, K.; Garbaccio, R. M.; Stachel, S. J.; Solit, D. B.; Chiosis, G.; Rosen, N.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2003, 42, 1280; (b) Moulin, E.; Barluenga, S.; Totzke, F.; Winssinger, N. Chem. Eur. J. 2006, 12, 8819; (c) Proisy, N.; Sharp, S. Y.; Boxall, K.; Connelly, S.; Roe, S. M.; Prodromou, C.; Slawin, A. M. Z.; Pearl, L. H.; Workman, P.; Moody, C. J. Chem. Biol. 2006, 13, 1203; (d) Hearn, B. R.; Sundermann, K.;

Cannoy, J.; Santi, D. V. ChemMedChem 2007, 2, 1598; (e) Stevenson, D. E.; Hansen, R. P.; Loader, J. I.; Jensen, D. J.; Cooney, J. M.; Wilkins, A. L.; Miles, C. O. J. Agric. Food Chem. 2008, 56, 4032; (f) Rich, J. O.; Budde, C. L.; McConeghey, L. D.; Cotterill, I. C.; Mozhaev, V. V.; Singh, S. B.; Goetz, M. A.; Zhao, A.; Michels, P. C.; Khmelnitsky, Y. L. Bioorg. Med. Chem. Lett. 2009, 19, 3059; (g) Day, J. E. H.; Blake, A. J.; Moody, C. J. Synlett 2009, 1567; (h) Jogireddy, R.; Dakas, P.-Y.; Valot, G.; Barluenga, S.; Winssinger, N. Chem. Eur. J. 2009, 15, 11498.

- 8. L-783,277 has recently been the subject of two successful total syntheses.^{6i,m} 9. Fürstner has employed the Heck reaction in his total synthesis of $(-)$ zearalenone: Fürstner, A.; Thiel, O. R.; Kindler, N.; Bartkowska, B. J. Org. Chem. 2000, 65, 7990.
- 10. Pailer, M.; Berner, H.; Makleit, S. Monatsh. Chem. 1967, 98, 1603.
- 11. Compound 9 can be obtained from Questor, Queen's University of Belfast, Northern Ireland. Questor Centre Contact Page: [http://questor.qub.ac.uk/](http://questor.qub.ac.uk/newsite/contact.htm) [newsite/contact.htm](http://questor.qub.ac.uk/newsite/contact.htm) (accessed Oct 16, 2009). For reviews on methods for generating cis-1,2-dihydrocatechols by microbial dihydroxylation of the corresponding aromatics, as well as the synthetic applications of these metabolites, see: (a) Hudlicky, T.; Gonzalez, D.; Gibson, D. T. Aldrichim. Acta 1999, 32, 35; (b) Banwell, M. G.; Edwards, A. J.; Harfoot, G. J.; Jolliffe, K. A.; McLeod, M. D.; McRae, K. J.; Stewart, S. G.; Vögtle, M. Pure Appl. Chem. 2003, 75, 223; (c) Johnson, R. A. Org. React. 2004, 63, 117; (d) Hudlicky, T.; Reed, J. W. Synlett 2009, 685
- 12. Banwell, M. G.; Edwards, A. J.; Loong, D. T. J. ARKIVOC 2004, x, 53.
- 13. Fonseca, G.; Seoane, G. A. Tetrahedron: Asymmetry 2005, 16, 1393.
- 14. Williams, J. M.; Jobson, R. B.; Yasuda, N.; Marchesini, G.; Dolling, U.-H.; Grabowski, E. J. J. Tetrahedron Lett. 1995, 36, 5461.
- 15. Grieco, P. A.; Gilman, S.; Nishizawa, M. J. Org. Chem. 1976, 41, 1485.
- 16. X-ray crystal data and ORTEPs for compound 14 (CCDC no. 751603) can be found in the Supplementary data.
- 17. The conditions employed were essentially those of Jeffery (Jeffery, T. Tetrahedron 1996, 52, 10113).
- 18. Conditions defined by Lang and Steglich were employed for this transformation (Lang, M.; Steglich, W. Synthesis 2005, 1019).
- 19. Dembinski, R. Eur. J. Org. Chem. 2004, 2763. and references cited therein.
- 20. Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953.
- 21. Selected spectral data derived from compound 5: mp 127.5-136.5 °C; $[\alpha]_D$ +9.7 (c 0.23, CHCl₃); ¹H NMR (800 MHz, CD₂Cl₂) δ 11.83 (s, 1H), 7.00 (m, 1H), 6.37 $(m, 3H)$, 5.57 $(m, 1H)$, 4.68 $(s, 1H)$, 3.96 $(s, 1H)$, 3.80 $(s, 3H)$, 3.06 $(t, J = 12.8$ Hz, 1H), 2.84 (br s, 1H), 2.54 (m, 2H), 1.71 (br s, 2H), 1.62 (s, 1H), 1.45 (d, J = 6.1 Hz, 3H), 1.30 (m, 1H) (signals due to two protons not observed); ¹³C NMR $(200 \text{ MHz}, \text{ CD}_2\text{Cl}_2)$ δ 199.3, 171.4, 166.3, 164.7, 147.7, 143.8, 131.5, 109.5, 104.9, 99.3, 77.4, 73.3, 71.3, 55.7, 38.0, 36.2, 32.8, 26.9, 19.2; IR v_{max} 3347, 2938, 1695, 1642, 1615, 1353, 1316, 1250, 1202, 1161, 1131, 1111, 1089, 1045, 995 cm⁻¹; MS m/z (El, 70 eV) 364 (M⁺, 17%), 221 (80), 202 (43), 193 (58), 192 (100), 177 (48), 164 (75); HRMS Found M⁺, 364.1532. C₁₉H₂₄O₇ requires M⁺ 364.1522.
- 22. X-ray crystal data for compound 5 (CCDC no. 751602) can be found in the Supplementary data.